
Preface to the First Edition

“IT ’S A WONDERFUL TIME TO BE ALIVE.” At least that’s what I’ve found myself
saying over the past couple of decades. When I first started working with com-
puters, they were resources used by a privileged (or in my case, persistent) few.
They were physically large, and logically small. They were cast from iron. The
challenge was to make these behemoths solve complex problems quickly.

Today, computers are everywhere. They are in the office and at home. They
speak to us on telephones; they zap our food in the microwave. They make
starting cars in New England a possibility. Everyone’s using them. What has
aided their introduction into society is their diminished size and cost, and in-
creased capability. The challenge is to make these behemoths solve complex
problems quickly.

Thus, while the computer and its applications have changed over time, the
challenge remains the same: How can we get the best performance out of the
current technology? The design and analysis of data structures lay the funda-
mental groundwork for a scientific understanding of what computers can do
efficiently. The motivations for data structure design work accomplished three
decades ago in assembly language at the keypunch are just as familiar to us to-
day as we practice our craft in modern languages on computers on our laps. The
focus of this material is the identification and development of relatively abstract
principles for structuring data in ways that make programs efficient in terms of
their consumption of resources, as well as efficient in terms of “programmability.”

In the past, my students have encountered this material in Pascal, Modula-2,
and, most recently, C++. None of these languages has been ideal, but each has
been met with increasing expectation. This text uses The Java Programming
Language1—“Java”—to structure data. Java is a new and exciting language
that has received considerable public attention. At the time of this writing, for
example, Java is one of the few tools that can effectively use the Internet as a
computing resource. That particular aspect of Java is not touched on greatly
in this text. Still, Internet-driven applications in Java will need supporting data
structures. This book attempts to provide a fresh and focused approach to the
design and implementation of classic structures in a manner that meshes well
with existing Java packages. It is hoped that learning this material in Java
will improve the way working programmers craft programs, and the way future
designers craft languages.

Pedagogical Implications. This text was developed specifically for use with
CS2 in a standard Computer Science curriculum. It is succinct in its approach,
and requires, perhaps, a little more effort to read. I hope, though, that this text

1 Java is a trademark of Sun Microsystems, Incorporated.



xii Preface to the First Edition

becomes not a brief encounter with object-oriented data structure design, but a
touchstone for one’s programming future.

The material presented in this text follows the syllabus I have used for sev-
eral years at Williams. As students come to this course with experience using
Java, the outline of the text may be followed directly. Where students are new
to Java, a couple of weeks early in the semester will be necessary with a good
companion text to introduce the student to new concepts, and an introductory
Java language text or reference manual is recommended. For students that need
a quick introduction to Java we provide a tutorial in Appendix B. While the text

N

NW

SW
SE

NE

W

S

E

was designed as a whole, some may wish to eliminate less important topics
and expand upon others. Students may wish to drop (or consider!) the sec-
tion on induction (Section 5.2.2). The more nontraditional topics—including,
for example, iteration and the notions of symmetry and friction—have been in-
cluded because I believe they arm programmers with important mechanisms for
implementing and analyzing problems. In many departments the subtleties of
more advanced structures—maps (Chapter 15) and graphs (Chapter 16)—may
be considered in an algorithms course. Chapter 6, a discussion of sorting, pro-
vides very important motivating examples and also begins an early investigation
of algorithms. The chapter may be dropped when better examples are at hand,
but students may find the refinements on implementing sorting interesting.

Associated with this text is a Java package of data structures that is freely
available over the Internet for noncommercial purposes. I encourage students,

List
educators, and budding software engineers to download it, tear it down, build it
up, and generally enjoy it. In particular, students of this material are encouraged
to follow along with the code online as they read. Also included is extensive
documentation gleaned from the code by javadoc. All documentation—within
the book and on the Web—includes pre- and postconditions. The motivation for
this style of commenting is provided in Chapter 2. While it’s hard to be militant
about commenting, this style of documentation provides an obvious, structured
approach to minimally documenting one’s methods that students can appreciate
and users will welcome. These resources, as well as many others, are available
from McGraw-Hill at http://www.mhhe.com/javastructures.

Three icons appear throughout the text, as they do in the margin. The

nim
top “compass” icon highlights the statement of a principle—a statement that
encourages abstract discussion. The middle icon marks the first appearance of
a particular class from the structure package. Students will find these files at
McGraw-Hill, or locally, if they’ve been downloaded. The bottom icon similarly
marks the appearance of example code.

Finally, I’d like to note an unfortunate movement away from studying the
implementation of data structures, in favor of studying applications. In the
extreme this is a disappointing and, perhaps, dangerous precedent. The design
of a data structure is like the solution to a riddle: the process of developing the
answer is as important as the answer itself. The text may, however, be used as a
reference for using the structure package in other applications by selectively
avoiding the discussions of implementation.



Preface to the Second Edition

Since the first edition of Java Structures support for writing programs in Java2

has grown considerably. At that time the Java Development Toolkit consisted
of 504 classes in 23 packages3 In Java 1.2 (also called Java 2) Sun rolled out
1520 classes in 59 packages. This book is ready for Java 1.4, where the number
of classes and packages continues to grow.

Most computer scientists are convinced of the utility of Java for program-
ming in a well structured and platform independent manner. While there are
still significant arguments about important aspects of the language (for exam-
ple, support for generic types), the academic community is embracing Java, for
example, as the subject of the Computer Science Advanced Placement Exami-
nation.

It might seem somewhat perplexing to think that many aspects of the origi-
nal Java environment have been retracted (or deprecated) or reconsidered. The
developers at Sun have one purpose in mind: to make Java the indispensable
language of the current generation. As a result, documenting their progress on
the development of data structures gives us valuable insight into the process of
designing useful data structures for general purpose programming. Those stu-
dents and faculty considering a move to this second edition of Java Structures
will see first-hand some of the decisions that have been made in the interven-
ing years. During that time, for example, the Collection-based classes were
introduced, and are generally considered an improvement. Another force—
one similar to calcification—has left a trail of backwards compatible features
that are sometimes difficult to understand. For example, the Iterator class
was introduced, but the Enumeration class was not deprecated. One subject of
the first edition—the notion of Comparable classes—has been introduced into
a number of important classes including String and Integer. This is a step
forward and a reconsideration of what we have learned about that material has
lead to important improvements in the text.

Since the main purpose of the text is to demonstrate the design and behavior
of traditional data structures, we have not generally tracked the progress of
Java where it blurs the view. For example, Java 2 introduces a List interface
(we applaud) but the Vector class has been extended to include methods that
are, essentially, motivated by linked lists (we wonder). As this text points out
frequently, the purpose of an interface is often to provide reduced functionality.
If the data structure does not naturally provide the functionality required by the
application, it is probably not an effective tool for solving the problem: search
elsewhere for an effective structure.

2 The Java Programming Language is a trademark of Sun Microsystems, Incorporated.
3 David Flanagan, et al., Java in a Nutshell, O’Reilly & Associates.



xiv Preface to the Second Edition

As of this writing, more than 100, 000 individuals have searched for and
downloaded the structure package. To facilitate using the comprehensive set
of classes with the Java 2 environment, we have provided a number of features
that support the use of the structure package in more concrete applications.
Please see Appendix C.

Also new to this edition are more than 200 new problems, several dozen
exercises, and over a dozen labs we regularly use at Williams.

Acknowledgments. Several students, instructors, and classes have helped to
shape this edition of Java Structures. Parth Doshi and Alex Glenday—diligent
Williams students—pointed out a large number of typos and stretches of logic.
Kim Bruce, Andrea Danyluk, Jay Sachs, and Jim Teresco have taught this course
at Williams over the past few years, and have provided useful feedback. I tip
my hat to Bill Lenhart, a good friend and advisor, who has helped improve this
text in subtle ways. To Sean Sandys I am indebted for showing me new ways to
teach new minds.

The various reviewers have made, collectively, hundreds of pages of com-
ments that have been incorporated (as much as possible) into this edition:
Eleanor Hare and David Jacobs (Clemson University), Ram Athavale (North
Carolina State University), Yannick Daoudi (McGill University), Walter Daugh-
erty (Texas A&M University), Subodh Kumar (Johns Hopkins University), Toshimi
Minoura (Oregon State University), Carolyn Schauble (Colorado State Univer-
sity), Val Tannen (University of Pennsylvania), Frank Tompa (University of Wa-
terloo), Richard Wiener (University of Colorado at Colorado Springs), Cynthia
Brown Zickos (University of Mississippi), and my good friend Robbie Moll (Uni-
versity of Massachusetts). Deborah Trytten (University of Oklahoma) has re-
viewed both editions! Still, until expert authoring systems are engineered, au-
thors will remain human. Any mistakes left behind or introduced are purely
those of the author.

The editors and staff at McGraw-Hill–Kelly Lowery, Melinda Dougharty, John
Wannemacher, and Joyce Berendes–have attempted the impossible: to keep me
within a deadline. David Hash, Phil Meek, and Jodi Banowetz are responsible
for the look and feel of things. I am especially indebted to Lucy Mullins, Judy
Gantenbein, and Patti Evers whose red pens have often shown me a better way.

Betsy Jones, publisher and advocate, has seen it all and yet kept the faith:
thanks.

Be aware, though: long after these pages are found to be useless folly, my
best work will be recognized in my children, Kate, Megan, and Ryan. None
of these projects, of course, would be possible without the support of my best
friend, my north star, and my partner, Mary.

Enjoy!

Duane A. Bailey
Williamstown, May 2002



Preface to the
√

7 Edition

In your hand is a special edition of Java Structures designed for use with two
semesters of Williams’ course on data structures, Computer Science 136. This
version is only marginally different than the preceding edition, but is positioned
to make use of Java 5 (the trademarked name for version 1.5 of the JDK).
Because Java 5 may not be available (yet) on the platform you use, most of the
code available in this book will run on older JDK’s. The one feature that would
not be available is Java’s new Scanner class from the java.util package; an
alternative is my ReadStream class, which is lightly documented in Section B.3.1
on page 494. It is a feature of the structure package soon to be removed.

In making this book available in this paperbound format, my hope is that
you find it a more inviting place to write notes: additions, subtractions, and
updates that you’re likely to have discussed in class. Sometimes you’ll identify
improvements, and I hope you’ll pass those along to me. In any case, you can
download the software (as hundreds of thousands have done in the past) and
modify it as you desire.

On occasion, I will release new sections you can incorporate into your text,
including a discussion of how the structure package can make use of generic
types.

I have spent a considerable amount of time designing the structure pack-
age. The first structures were available 8 years ago when Java was still in its
infancy. Many of the structures have since been incorporated (directly or indi-
rectly) into Sun’s own JDK. (Yes, we’ve sold a few books in California.) Still, I
feel the merit of my approach is a slimness that, in the end, you will not find
surprising.

Meanwhile, for those of you keeping track, the following table (adapted
from the 121 cubic inch, 3 pound 6 ounce, Fifth edition of David Flanagan’s
essential Java in a Nutshell) demonstrates the growth of Java’s support:

JDK Packages Classes Features
1.0 8 212 First public version
1.1 23 504 Inner classes
1.2 (Java 2) 59 1520 Collection classes
1.3 76 1842 A “maintenance” release.
1.4 135 2991 Improvments, including assert

1.5 (Java 5) 166 3562 Generics, autoboxing, and “varargs.”

Seeing this reminds me of the comment made by Niklaus Wirth, designer of
Pascal and the first two releases of Modula. After the design team briefed him
on the slew of new features to be incorporated into Modula 3, he parried: “But,
what features have you removed?” A timeless question.



xvi Preface to the
√

7 Edition

Acknowledgments. This book was primarily written for students of Williams
College. The process of publishing and reviewing a text tends to move the focus
off campus and toward the bottom line. The Route 7 edition4—somewhere
between editions 2 and 3—is an initial attempt to bring that focus back to those
students who made it all possible.

For nearly a decade, students at many institutions have played an important
role in shaping these resources. In this edition, I’m especially indebted to Katie
Creel ’10 (Williams) and Brian Bargh ’07 (Messiah): thanks!

Many colleagues, including Steve Freund ’95 (Stanford, now at Williams),
Jim Teresco ’92 (Union, now at Mount Holyoke), and especially Gene Chase ’65
(M.I.T., now at Messiah) continue to nudge this text in a better direction. Brent
Heeringa ’99 (Morris, now at Williams) showers all around him with youthful
enthusiasm.

And a most special thanks to Bill Mueller for the shot heard around the
world—the game-winning run that showed all things were possible. Called by
Joe Castiglione ’68 (Colgate, now at Fenway):

“Three-and-one to Mueller. One out, nineth inning. 10-9 Yankees,
runner at first. Here’s the pitch...swing and a High Drive Deep to
Right...Back Goes Sheffield to the Bullpen...AND IT IS GONE!...AND
THE RED SOX HAVE WON IT!...ON A WALKOFF TWO RUN HOMER
BY BILL MUELLER OFF MARIANO RIVERA! CAN YOU BELIEVE IT?!”

Have I been a Red Sox fan all my life? Not yet.
Finally, nothing would be possible without my running mate, my Sox buddy,

and my best friend, Mary.

Cheers!

Duane A. Bailey ’82 (Amherst, now at Williams)
Williamstown, September 2007

4 Route 7 is a scenic byway through the Berkshires and Green Mountains that eddies a bit as it
passes through Williamstown and Middlebury.


